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ABSTRACT
Understanding where electricity is being used in build-
ings is an important tool for Cyber-Physical Systems
(CPS) used in building energy conservation and effi-
ciency. Current approaches for appliance-level energy
metering typically require the installation of plug-through
power meters, which is often difficult and costly for de-
vices with inaccessible wires or outlets, or appliances
that draw large amounts of current. In this paper, we
present an energy measurement system that estimates
the energy consumption of individual appliances using
a wireless sensor network consisting of contactless elec-
tromagnetic field (EMF) sensors deployed near each ap-
pliance, and a whole-house power meter. We present
the design of a battery-operated EMF sensor, which can
detect appliance state transitions within close proximity
based on magnetic and electric field fluctuations. Each
detector wirelessly transmits state change events to a
circuit-panel energy meter, in a time-synchronized fash-
ion, so that the overall power measurements can be used
to estimate appliance-level energy usage. Our EMF sen-
sors are able to detect significant power state changes
from a few inches away, thus making it possible to exter-
nally monitor in-wall wiring to devices. We experimen-
tally evaluate our proposed EMF sensor, three-phase
power meter and communication protocol in a residen-
tial building collecting data for over a week. The system
is able to detect appliance state transitions with an ac-
curacy of 95.8% and estimate the overall energy with an
accuracy of 98.1%.
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1. INTRODUCTION
Given that the building sector is responsible for the

largest portion of the electricity use in the world (e.g.,
75% of the electrical demand in the United States in
2010 [1]), knowing when and where electricity is being
used in buildings is an important first step towards im-
proving our energy conservation and efficiency efforts.
Monitoring and control strategies used in future smart
building CPS require continuous, timely and accurate
sensor feedback. In industrial environments, for instance,
efficiency experts often use preliminary profiling of ap-
pliance usage to suggest equipment updates and/or load
scheduling strategies. Similarly, energy audits are per-
formed in many commercial and even residential build-
ings to discover efficiency or curtailment opportunities.
While these strategies provide consumers with a bet-
ter understanding of their consumption patterns at one
point in time, more recently there has been a growing in-
terest in the development and deployment of appliance-
level energy monitoring systems with the goal of provid-
ing continuous feedback to end users about their con-
sumption patterns with hopes of realizing energy sav-
ings that result from a change in behavior triggered by
these feedback mechanisms. Some researchers have es-
timated this feedback-induced savings to be up to 20%
[2, 3]. This appliance-level continuous feedback also pro-
vides building managers accurate information that can
be used to target the most effective update and retrofit
strategies.

Current approaches for metering typically require the
appliances to be wired inline with energy meters. Unfor-
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tunately, this can be expensive in terms of both hard-
ware (requiring full meters at each appliance) and in-
stallation cost. For example, many appliances such as
overhead lights are hard-wired and would require an
electrician to install each individual sensor. Further-
more, many of these plug-through meters have a max-
imum rated current that prohibits their use with some
high-power loads such as those present in heating, ven-
tilation and air conditioning systems, which happen to
be some of the top energy consumers in commercial and
residential buildings.

To overcome these limitations, in this paper we present
a contactless electromagnetic field (EMF) sensor which
detects appliance power consumption state changes within
close proximity, based on measurements of magnetic and
electric field fluctuations. We show how this sensor can
be combined with whole-house power measurements ob-
tained at the main electrical panel of the home, to accu-
rately estimate the consumption of individual appliance
over time in a low-cost, simple to install way.

Most modern magnetic field measurement devices ei-
ther have a low sensitivity or are prone to noise, mak-
ing them only suitable for monitoring large loads such
as large electric motors. Our EMF detector, on the
other hand, utilizes a highly sensitive auto-gain circuit
along with a local event detection algorithm to signifi-
cantly improve reliability. We also utilize both magnetic
and electric field strength measurements independently
to determine when significant changes have occurred in
the appliance. Data from these sensors are then re-
layed back to the main meter using a low-latency wire-
less sensor networking protocol, where changes in the
total power consumption of the house are used to deter-
mine the power usage of the appliance that caused it. As
compared with other energy monitoring solutions, such
as plug-through meters, this solution is low-cost, easy-
to-deploy and can be installed without disrupting the
current operation of appliances. The sensors are able
to detect current changes associated with the appliance
from a few inches away making it possible to externally
monitor in-wall wiring to devices like overhead lights or
heavy machinery that might operate on multiple phases
of the AC distribution system of the building.

The main contributions of this paper are three-fold.
First, we design a low-power and robust battery-operated
wireless EMF sensor to detect significant fluctuations
that correspond to a change in the operating status of
an appliance. We refer to these changes as events, and
sometimes call the sensor an EMF event detector. Our
proposed event detection sensor is compact and con-
sumes on average 45µW , making it ideal for long-term
battery-powered operation. Next, we design and evalu-
ate a high-speed wireless data collection protocol that
allows power events to be correlated with whole-house

power measurements obtained through a custom power
meter board capable of monitoring 3-phase AC lines at
the main electric panel of the building. Finally, we eval-
uate the overall system’s ability to estimate appliance-
level energy consumption from measurements gathered
during a 1-week deployment of the system in a single-
family home.

1.1 Organization of the Paper
The rest of the paper is organized as follows. In Sec-

tion 2, we provide an overview of relevant previous work
in electricity monitoring. In Section 3, we describe the
various hardware components of the system. Section 4
then discusses the event detector running locally on each
EMF sensor as well as the approach used to label appli-
ance power consumption using the three-phase meter.
Section 5 describes the sensor networking protocol used
to collect the data and Section 6 evaluates the overall
performance of the system. Finally, Section 7 provides
concluding remarks and suggests future work.

2. RELATED WORK
Multiple research projects have investigated improv-

ing the visibility of the electricity demand of buildings.
The MIT Plug [4] provided users with power and sen-
sor information by means of a smart surge protector.
In [5], the author’s present experiences using the ACme
wireless plug sensor in an office environment. In [6], the
authors present ViridiScope which uses indirect sensing
of appliances to estimate per-person energy consump-
tion. This work suggests using magnetic field sensors
to estimate the power consumption of a device. This
is similar in concept to our EMF event detector except
that we perform local processing on a significantly more
amplified signal to detect state changes from distances
up to a few inches away from wires. We found that the
geometry between the cable and the pickup as well as
the power factor of the device being tested make it ex-
tremely difficult to estimate power consumption without
device and installation-specific calibration. Instead, our
EMF event detector focuses on detecting appliance state
changes rather than trying to directly measure power.
This information, if time-synchronized with panel me-
ter data, can be used to quantify the power consump-
tion of the appliance. Other researchers have attempted
to address the automated annotation problem by using
multi-modal sensor fusion schemes [7]. One of the pri-
mary focuses of this work is on intelligent local process-
ing to improve sensing accuracy which would benefit
these other systems.

Commercial devices like Energenie [8], Efergy [9] and
Kill-A-Watt [10] have already become household names
among those interested in monitoring their appliances
for power use. These devices are basically portable plug-
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Figure 1: Network Architecture

level meters with a built-in display that provides infor-
mation on real-time power consumed by the appliance
plugged through it. The lack of a central platform for
gathering information from multiple such meters means
that users sometimes have to go around the house to
collect this information. To remedy this, several wire-
less energy monitoring tools such as ACme [5], Tendril
[11], GreenBox [12], EnergyHub [13] and Plogg [14] have
been proposed and/or commercialized.

3. SYSTEM HARDWARE
In this section, we discuss the various components of

our system that are required to collect and correlate
appliance on/off events with circuit-level power data.
Figure 1 shows an overview of the system architecture
which consists of the three-phase meter used for over-
all mains power metering, plug-meter devices used for
ground-truth data collection and the EMF detectors.
These components are connected to a networked back-
end and displayed on the dashboard described in [15].

3.1 Circuit-Panel Meter
We designed a custom three-phase power meter, shown

in Figure 2, which employs the cutting edge ADE7878
energy metering chip from Analog Devices, specifically
to collect high resolution data which can be correlated
with events from our EMF detectors. Off-the-shelf en-
ergy meters often make it difficult to capture high-speed
raw waveforms. In contrast, our meter samples both the
current and the voltage on each phase at 1KHz, and uses
an on-chip DSP to compute true, apparent and reactive
power, as well as several other energy metrics. The tight
coupling between the power sampling and the radio in-
terface reduces timestamp error between the signals sent
from the appliance state detectors and the power values

Figure 2: Wireless Three-Phase Circuit-Panel
Meter

Figure 3: Wireless Plug-Level Meter

at the circuit panel. A tighter time synchronization also
improves the ability of the system to disambiguate tem-
porally close appliance transitions. The main board is
powered from either 120 or 240 VAC and can sense volt-
ages as large as 600VAC. Current sensing uses split-core
current transformers and both voltage and current val-
ues are read at 24-bit resolution. The overall range and
accuracy values depend on the particular configuration
of the current transformer used, but this configuration
typically meets the 0.2% accuracy requirements for most
utility billing standards.

3.2 Plug Meter
We use the FireFly plug meter [16] for ground-truth

validation and for devices that can benefit from remote
actuation. Each plug meter, shown in Figure 3 contains
the ability to monitor and control two electrical outlets
using wireless communication. The meter uses an effi-
cient switching power supply that draws less than 0.1
watts ensuring that it does not unnecessarily increase
the building power consumption. The meter measures
true power, apparent power, power factor, frequency,
RMS current and RMS voltage with a sampling rate of
1KHz. Two solid-state relays are used to independently
control each outlet.

3.3 EMF Sensor
The core principle behind the EMF event detector is

the ability to sense an appliance state change, by mon-
itoring changes in nearby electromagnetic fields. From
the laws of physics, we know that an alternating current
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flowing through a conductor will generate a correspond-
ing magnetic field (H). Typically AC wires run as par-
allel pairs and hence most of the magnetic fields cancel
out. However, imbalances in wires and stray currents
flowing on ground lines as well as through appliances
produce a significant magnetic field. The amplitude of
this field is generally small (millivolts), but if sufficiently
amplified, one can reconstruct the original source to a
reasonable degree of approximation.

Each time an appliance changes its power consump-
tion (transitioning between on and off ), there is a cor-
responding change in the nearby magnetic field. In con-
trast, differences in voltages are responsible for creating
electric fields. This means that an appliance that is not
drawing current may still generate a strong electric field
(E). The distinction between the electric and magnetic
field is useful for two reasons. First, the electric field
can be used to detect if a device is ”live” or not. For
example, overhead lights often switch the hot AC lines
which can easily be detected by inspecting the electric
field. Second, if a device is powered, but not active,
the electric field strength can be used as a guide to find
placement areas where there will be a strong magnetic
field once current begins to flow. Since the electric field
is not dependent on current flowing, abnormal fluctua-
tions in the electric field tend to indicate potential noisy
situations. For example, if people are nearby or touch-
ing the sensor, both the electric and magnetic field will

Figure 5: EMF event detector stacked on Fire-
Fly3 sensor node.

be disturbed.
Figure 6 shows a circuit that detects both magnetic

and electric fields. The magnetic field is detected using
an instrumentation amplifier (INA) and an inductor.
We use a INA with a fixed 1000x gain that then feeds
a high-pass capacitively coupled filter that removes DC
bias to center the signal given a single ended voltage
supply. The amplitude of the analog output generally
corresponds to the strength of the magnetic field. The
lower portion of the circuit uses a JFET and a small
wire acting as a Hertzian antenna to detect potential
differences across an electric field. The JFET opens
or closes based on the change in force exerted by the
electric field. The large-valued resistor between the gate
and ground acts as a runoff to remove excess charge
buildup from constant nearby fields.
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Figure 6: EMF Event Detector Circuit

Figure 4 shows two example waveforms received by
the circuit when placed near a ceiling fan and a desk-
top computer. Point (a) in the ceiling fan waveform
denotes the wall switch turning on which generates a
corresponding electric field. At point (b), the ceiling fan
is manually switched on (by pulling the hanging cord)
causing current to flow and hence generating a magnetic
field. The bottom line in the upper graph shows the root
mean square (RMS) value of the magnetic field signal
averaged over a window of 16ms (1/60Hz). The bottom
graph shows the magnetic field and the same sliding
RMS value for a desktop computer. In both these cases
the edges in the RMS signal are quite pronounced.

Figure 5 shows a picture of the EMF detector hard-
ware connected to a FireFly wireless sensor node. The
FireFly node is responsible for periodically sampling the
magnetic field in order to report appliance activation
events. Since the signal from the EMF detector has
a steady-state value associated with the current of the
appliance, the FireFly node can duty-cycle its sampling
to save energy. We explore this and provide additional
evaluation results related to the sensor’s sensitivity and
detection range in [17]. We measured that the EMF
detection front-end consumes approximately 45µW but
this value can vary depending on the strength of the
measured magnetic field.

4. SYSTEM SOFTWARE
In this section we first describe and evaluate the event

detection algorithm running on each EMF detector. We
then describe the approach used to label and record
per-appliance energy usage by communicating with the
three-phase meter.

4.1 Event Detection Firmware
The EMF sensor locally performs two main tasks: (1)

it adjusts a hardware gain setting on the magnetic field

sensing front-end to maintain a fixed peak-to-peak value
for the sensed signal and (2) it is responsible for detect-
ing significant changes in field strength and reporting
those to the wireless sensor node.

Our first challenge was choosing an adequate ADC
sampling rate such that the MSP430 could accurately
reconstruct the magnetic field signal. Sampling too slowly
would lead to poor performance, while sampling too
quickly would allow lesser time for the CPU to sleep,
resulting in greater power consumption. Figure 9 shows
the detection accuracy along with the power consump-
tion of the EMF detector as compared to the sampling
frequency used by the MSP430 to sample the ADC. In
order to determine a sufficient sampling rate, we vali-
dated the detection accuracy as compared to sampling
rate using the experimental setup shown in Figure 7.
The EMF sensor was placed at a distance of 5 cm (max-
imum range can be significantly larger depending on
the load current) from the wire while two different ap-
pliances were transitioned (switched on/off ) 40 times
each. The accuracy metric is computed as the number
of correct transitions divided by the total transitions
detected in order to penalize false positives. For this
experiment we used a 60 Watt fan and a 60 Watt in-
candescent light bulb since one is composed of a largely
inductive load and the other almost entirely resistive.
Figure 8 shows the raw magnetic field for a few cycles
as viewed on an oscilloscope. One can clearly see that
the fan has a unique signature that would make it more
difficult to detect with a low sampling rate. Based on
this graph, we chose to operate the EMF detector at
about 1KHz since this maintains reasonable accuracy
and is positioned just before the power dramatically in-
creases.

In order to increase robustness on the magnetic field
sensing front-end, the MSP430 performs a continuous
auto-gain operation to keep the peak-to-peak range of
the signal at approximately Vdd

2 so as to avoid clip-
ping while still capture events of interest. As described
above, the MSP430 samples the signal every 1ms over
a window of 25 samples. To filter out noise, the peak
values found in four such windows are averaged and the
gain is adjusted every 100ms using a digital potentiome-
ter. A simple three-stage step function controller is used
to continuously track the input signal.

During the data collection, each EMF sensor trans-
mitted its auto-gain value every 640ms. Significant changes
in this value indicate that a nearby appliance has changed
its power consumption. After inspecting the data of-
fline, it became apparent that a simple Vdd

2 threshold
was sufficient to detect binary appliance state changes.
As future work, we intend to investigate detecting more
subtle changes based on correlating the gain values with
the mains power values to improve labelling of multi-
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Figure 8: Raw magnetic field waveform for fan
(left) and incandescent light bulb (right).

state or continuously variable appliances.

4.2 Appliance Metering
Every time an EMF sensor detects an event, it sends

a time-stamped message to the gateway. Our algorithm
then determines the change in power across a time win-
dow before and after the event (the size of this window
is evaluated in Section 6). We assume that the power
consumption for this appliance remains constant when
the appliance is on. This constant value is found by
averaging the absolute value of the power change dur-
ing the off -on and on-off transitions, and the energy is
found by integrating the power for the on period. Fig-
ure 10 illustrates this power computation process for a
couple of hours while metering a refrigerator. The true
power from the plug meter is also shown for validation.

A benefit of estimating power based on events, apart
from its simplicity and effectiveness, is that it can han-
dle finite state transitions of an appliance to estimate
varying power consumption over a cycle, which has tra-
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Figure 10: Top: Appliance energy estimator
running on a refrigerator. Arrows show EMF
event inputs onto the mains power waveform.
The bars across the top represent the constant
power. Botton: Ground truth from plug meter

ditionally been a hard problem to tackle. The main
limitation is that this approach fails to correctly esti-
mate energy usage for devices whose power consumption
varies slowly over time (and between events) or devices
that have significant phantom loads.

5. HIGH-SPEED DATA COLLECTION
In order to facilitate ground-truth data collection, we

required a networking protocol that was able to receive
data from 64 nodes (our deployment homes had approx-
imately 50 appliances in them), across multiple hops
at sampling rates greater than 1Hz. A subset of these
nodes were powered by AAA batteries and were hence
highly energy constrained. We designed a protocol called
mPCF that is loosely based upon the Point-Coordination-
Function (PCF) mode of 802.11. The major differences
are that we added support for efficient downstream multi-
hop time synchronization using the Glossy [18] time syn-
chronization primitive and included a simple multi-hop
upstream packet-scheduling scheme. Unlike existing (of-
ten complex) TDMA protocols, our goal was to provide
a simple implicitly scheduled system that did not require
topology collection or scheduling at a master node and
that could still provide high-throughput communication
between root and leaf nodes.

In 802.11 PCF, a master node transmits a beacon to
synchronize a set of client nodes. Each client node is as-
signed a time-slot in which they can reply in a collision-
free manner each cycle. In our implementation, each
node uses the lower byte of its MAC address as a reply
slot assignment. This imposes the requirement that all
nodes have unique subnet addresses (lower byte), which
set the implicit schedule. All downstream communica-
tion (for example to toggle a plug-meter outlet on or off)
is sent at the end of the master’s beacon packet and
each client node can only reply upstream to the mas-
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Figure 11: Operation of the mPCF protocol

ter (no peer-to-peer support). The master beacons are
flooded across the network using the active construction
principle found in the Glossy [18] time synchronization
protocol. Each node rebroadcasts the downstream mes-
sage after decrementing a TTL counter quickly enough
that nodes experience constructive interference at the
receivers rather than a collision. In Figure 11, point a
shows the master’s beacon message at the start of each
cycle. Point b then shows a client S1 sending data back
to the master in the first slot. The client can then sleep
until the start of the next cycle (the master node is
assumed to be connected to a gateway and powered).
In our implementation, the beacon node includes the
number of slots and the size of each slot in the current
cycle, to allow the master node to dynamically adjust
the throughput on a cycle-by-cycle basis. In a single-
hop network, this approach proves to be extremely ef-
fective in terms of both energy and throughput. In one
of our deployments, we had 64 nodes reporting data ev-
ery 640 ms with an average radio duty-cycle of 0.03%
which is comparable to the idle mode of existing lis-
tening/probing [19, 20] protocols. Based on a 50ppm
clock crystals, nodes can typically afford to miss 2 or 3
beacons before they become significantly out of sync to
cause problems. Once a node does lose synchronization,
it will keep its radio active until it receives a new beacon
packet.

The 802.15.4 radio has a theoretical throughput of
250Kb/s. In our deployment, we have 64 10ms TDMA
slots. The maximum data that can be transmitted per
slot, excluding the packet overhead is 100 bytes, thus
resulting in a goodput of 100Kb/s. As described in Sec-
tion 6, we deployed 28 plug meters (51 bytes/packet)
and 7 syntonistors (3 bytes/packet), resulting in an ef-
fective data rate of 22.64Kb/s.

The two most prominent drawbacks of this approach
are the lack of multi-hop support and the requirement
that all nodes have unique lower-byte MAC addresses.
In order to add multi-hop support, we extended PCF to
include a contention-based communication slot at the
end of each TDMA cycle. If a node is unable to reli-
ably communicate directly with the master node (down-
stream communication uses Glossy), it can request a
neighbor to forward its messages during a contention
slot. Each client node listens on a contention slot at
the end of each TDMA cycle. The dwarfed client node
can then communicate to its neighbor in the contention
slot asking to become its child. Figure 11 point c shows
this transaction between node S3 and node S2. If the
assigned parent has the resources available, it will then
begin to listen on the child’s transmit slot as shown by
point d. The parent node will then aggregate its data
along with the child’s data (shown by point e). The
child node can then overhear its parent’s transmission
to acknowledge that its data is being forwarded (it lis-
tens for this packet to synchronize anyway). At this
point, the child has been paired with a parent and will
stop sending requests on the contention slot. Its impor-
tant to note that downstream data from the master can
utilize the Glossy primitive because it is a single packet
being flooded across the entire network. This would not
work for upstream communication.

This extension has two main limitations. First, a par-
ent must share its transmit packet with all children be-
low it which severely limits multi-hop scalability. Nodes
could keep packet queues and not transmit new data
on each cycle, but this coordination would have to be
maintained by the application. Second, now nodes that
are eligible for forwarding must listen on an additional
contention slot, which consumes more energy. For de-
ployments where relatively small data fragments are be-
ing transmitted (single packet per cycle) and the hop
depth is reasonable (typical homes and offices often re-
quire just a few hops) this approach is simple, effective
and enables high-speed data collection from tens or even
hundreds of nodes.

6. SYSTEM EVALUATION
In order to evaluate the overall energy metering per-

formance, we deployed our system in a single-family res-
idential building, and collected data for 1 week. We in-
stalled our three-phase energy meter on the two 150
Amp mains lines that feed the house. We installed
plug-level meters (28 total) on all accessible plug-load
appliances. Finally, we installed 7 EMF sensors on
the following appliances: LCD TV, Washing Machine,
Toaster Oven, Window AC, Laser Printer, Refrigerator
and Iron. Each appliance with an EMF sensor also had
a plug-meter which could be used to measure ground-
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truth readings.

6.1 Event Detection Performance
First, we evaluate how accurately each EMF sensor

was able to detect appliance transitions. Over the pe-
riod of 1 week, we compared the EMF sensor’s threshold-
based event detector with a hand-tuned threshold se-
lected for each plug-meter. When looking at the plug-
meter data, we selected thresholds that represented each
appliance in either an on or an off state. Figure 12
shows the confusion matrix for each appliance as well
as the overall average across all appliances. The confu-
sion matrix was generated by comparing the amount of
time that the EMF sensor categorized an appliance in
a state that agreed or disagreed with the ground-truth.
This is a more telling metric then doing an event-by-
event comparison since one poor event transition could
potentially set an appliance in the wrong state for an
extended period of time.

From the confusion matrix, we can observe that the
system in general performed well in categorizing the
appliance-state in agreement with the ground-truth. We
also observe that the Iron, TV and Laser Printer show
above average misclassification. In the case of the Iron,
the EMF-node was accidentally moved away from the
appliance around the fifth day in the week of testing,
hence it failed to detect 6 of the 29 events. The EMF-
detector assumed that every appliance takes only two
states, but the TV takes three states - on, off and standby.
When the TV was in the standby mode, the signal
strength was not sufficient to be classified as an on-state
by the EMF-detector, resulting in 3 standby events be-
ing classified as off events. Notice that all appliances
except the Printer perform well while the appliance is
off. The EMF-sensor corresponding to the Printer was
physically close to a monitor and was detecting the sig-
nal due to both appliances. Hence the EMF-sensor de-
tected an on state even though the Printer was off.

6.2 Appliance Metering Performance
We then evaluated how well the system worked at es-

timating the energy consumption of each appliance. We
analyzed how the system performed in two steps. First,
we computed the ground-truth energy consumption of
each device as recorded by the plug-meters. Next, we
ran our energy estimation algorithm based on main mea-
surements and using hand-selected thresholds derived
from the plug-meters. The idea was that this would
show appliance-metering performance assuming perfect
event detection. Finally, we let the system compute the
energy for each appliance using the actual EMF sen-
sor data. Figure 13 shows a stacked bar-graph plot of
each scheme. In this example, we choose a before-event
and post-event window size of 2 seconds for determining
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Figure 13: Energy estimation performance

the change in mains power for the appliance. Figure 14
shows the error for the EMF sensor as we vary this win-
dow size. In certain cases, having too small a window
leads to poor performance because the appliance has a
slow on or off transient. For example, an appliance like
a refrigerator draws an abnormally high amount of cur-
rent for a second or two while starting up. If the window
is too small, the system miscalculates the energy con-
sumption by assuming the high transient-power for the
entire on cycle of the appliance. On the other hand,
even if we select a large window size, the system runs
the risk of miscalculating the energy due to events that
occur nearby in time. As seen in Figure 14, a window
size of 2 seconds performed the best.

Consistent with the confusion matrix, we observe that
the EMF-based energy estimate of the TV and the Iron
are lower than the ground truth, due to the failure to
detect 20% and 15% of the events respectively. The
best-case per appliance energy disaggregation was seen
for the refrigerator, with an error of 1.3%. The worst-
case disaggregation was seen for the laser printer, with
an error of more than 1000%. As mentioned earlier, the
corresponding EMF-sensor was also detecting a moni-
tor placed nearby. Though the power-consumption of
the monitor is much lower than the printer, the mon-
itor was on for a much longer duration, resulting in a
several-fold increase in the energy-estimation. The er-
ror of the overall energy consumption is 1.9%. It is to
be noted that the refrigerator consumed 56.7% of the
total energy, whereas the laser printer consumed only
0.4% of the total energy. As seen from Figure 13, the
error is lower for appliances that consume more energy
and higher for appliances that tend to contribute less to
the house as a whole.

6.3 Energy and Latency Trade-off
Each time an appliance event occurs, the EMF sensor

node wakes up the FireFly so that it can report the
event back to the gateway. This means that the arrival
rate of events has a significant impact on the lifetime of
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Figure 12: EMF sensor event detection confusion matrices. Total event count in parentheses after
appliance name.
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the node. The duty-cycle of the communication protocol
also impacts lifetime at the cost of latency. For example,
with a slow TDMA duty-cycle the energy requirement
might be less, but the time it takes to report an event
could much longer. Figure 15 shows the lifetime of our
node under different expected event arrival rates while
varying the maximum expected communication latency
(related to the TDMA cycle size). These curves are
based on AA battery while taking into account energy
used by the EMF front-end, the FireFly node, radio
communication and battery shelf-life leakage. We see
that a system sized for 500ms latencies and an event
inter-arrival time of 1 second, operates for 1.5 years.

Next, we evaluate how jitter in event arrival (due to
potentially delayed packets) impacts the energy estima-
tion. Figure 16 shows that as long as the events are
reported within about 2 seconds of occurrence, we are
able to maintain nearly the best possible performance
for the system.

6.4 Limitations
There are three main limitations to this approach.

First, a local event detector still has the challenge asso-
ciated with determining which internal state transitions
are significant. In our system, we were focused on sig-
naling large state changes, but often appliances could
have a sequence of small internal states or continuously
variable consumption. In these cases, a different type of
detection algorithm may need to be investigated; per-
haps one that analyzes the signals in the frequency do-
main. The second limitation is that these devices can
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Figure 15: Estimated lifetime of node with re-
spect to latency at various expected event detec-
tion periods.
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suffer from cross-talk with different appliances if the de-
vices or cabling are in close proximity of each other. We
see this in our evaluation of certain devices present in
our experiments. For example, the laser printer suffers
from false positives. Part of optimizing the design is to
build a device where the range is large enough to de-
tect hard-to-reach wires, but small enough to minimize
overhearing other signals. The third limitation is that
the system cannot attribute static base-load values to
appliances. In certain cases, the energy consumed while
the appliance is supposedly off may be larger than its
active energy. Despite these limitations, we believe that
metering appliance-level energy consumption in a sim-
ple low-cost manner can still provide significant insight
to end-users.
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7. CONCLUSIONS
In conclusion, this paper presents the design of a new

EMF sensor which can be networked with a mains en-
ergy meter to estimate per-appliance energy consump-
tion. As compared with other energy monitoring so-
lutions, the combination of a mains meter with EMF
sensing is low-cost, easy-to-deploy and can be installed
without disrupting the current operation of appliances.
Since the sensors are proximity-based, they can detect
current changes associated with the appliance from a
few inches away making it possible to externally moni-
tor in-wall wiring to devices like overhead lights. We use
a secondary electric field sensor to help guide placement
of the sensor as well as utilize the electric field’s stability
to help filter out potential noise. We show that these
devices can operate from AA sized batteries for multi-
ple years and when run in a realistic residential envi-
ronment were able to detect events with an accuracy of
95.8% and estimate overall energy with an accuracy of
98.1%, as compared to ground-truth plug-meters.
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